Taxonomy expansion is the process of incorporating a large number of additional nodes (i.e., "queries") into an existing taxonomy (i.e., "seed"), with the most important step being the selection of appropriate positions for each query. Enormous efforts have been made by exploring the seed's structure. However, existing approaches are deficient in their mining of structural information in two ways: poor modeling of the hierarchical semantics and failure to capture directionality of is-a relation. This paper seeks to address these issues by explicitly denoting each node as the combination of inherited feature (i.e., structural part) and incremental feature (i.e., supplementary part). Specifically, the inherited feature originates from "parent" nodes and is weighted by an inheritance factor. With this node representation, the hierarchy of semantics in taxonomies (i.e., the inheritance and accumulation of features from "parent" to "child") could be embodied. Additionally, based on this representation, the directionality of is-a relation could be easily translated into the irreversible inheritance of features. Inspired by the Darmois-Skitovich Theorem, we implement this irreversibility by a non-Gaussian constraint on the supplementary feature. A log-likelihood learning objective is further utilized to optimize the proposed model (dubbed DNG), whereby the required non-Gaussianity is also theoretically ensured. Extensive experimental results on two real-world datasets verify the superiority of DNG relative to several strong baselines.


翻译:分类法的扩展是将大量其他节点(即“查询”)合并到现有分类法(即“种子”)中的过程,其中最重要的步骤是选择每个查询的适当位置。现有方法通过研究种子的结构来做出巨大努力,但现有方法在两方面挖掘结构信息时存在不足:对层次语义的建模不佳,无法捕获is-a关系的方向性。本文通过明确表示每个节点为继承特征(即结构部分)和增量特征(即补充部分)的组合,来解决这些问题。具体而言,继承特征来自“父”节点,并受到继承因子的加权。使用此节点表示,可以体现分类法中的语义层次结构(从“父”到“子”的继承和积累特征)。此外,基于此表示,is-a关系的方向性可以轻松地翻译为特征不可逆地继承。受达尔苗 斯基托维奇定理启发,我们通过对补充特征施加非高斯约束来实现这种不可逆性。进一步地,我们利用对数似然学习目标来优化所提出的模型(称为DNG),从而理论上也保证了所需的非高斯性。在两个真实数据集上的广泛实验结果验证了DNG相对于几种较强比较方法的优越性。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
33+阅读 · 2021年8月9日
专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
32+阅读 · 2021年3月8日
Arxiv
16+阅读 · 2020年5月20日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员