The optimal control of open quantum systems is a challenging task but has a key role in improving existing quantum information processing technologies. We introduce a general framework based on Reinforcement Learning to discover optimal thermodynamic cycles that maximize the power of out-of-equilibrium quantum heat engines and refrigerators. We apply our method, based on the soft actor-critic algorithm, to three systems: a benchmark two-level system heat engine, where we find the optimal known cycle; an experimentally realistic refrigerator based on a superconducting qubit that generates coherence, where we find a non-intuitive control sequence that outperform previous cycles proposed in literature; a heat engine based on a quantum harmonic oscillator, where we find a cycle with an elaborate structure that outperforms the optimized Otto cycle. We then evaluate the corresponding efficiency at maximum power.
翻译:对开放量子系统的最佳控制是一项艰巨的任务,但在改进现有量子信息处理技术方面发挥着关键作用。我们引入了一个基于强化学习的总体框架,以发现最佳热力循环,使离平衡量子热发动机和冰箱的能量最大化。我们根据软体-弧算法,将我们的方法应用于三个系统:一个基准的两层系统热力发动机,在那里我们找到已知的最佳循环;一个实验式现实的冰箱,它基于一种超导qubit,从而产生一致性,在那里我们发现一种非直觉的控制序列,它比文献中提议的前一个周期更完善;一个基于量子相容振动器的热力发动机,在那里我们找到一个精密的循环,其结构比优化的Otto周期更完善。然后我们评估在最大电量上的相应效率。