We investigate enhancing the sensitivity of new physics searches at the LHC by machine learning in the case of background dominance and a high degree of overlap between the observables for signal and background. We use two different models, XGBoost and a deep neural network, to exploit correlations between observables and compare this approach to the traditional cut-and-count method. We consider different methods to analyze the models' output, finding that a template fit generally performs better than a simple cut. By means of a Shapley decomposition, we gain additional insight into the relationship between event kinematics and the machine learning model output. We consider a supersymmetric scenario with a metastable sneutrino as a concrete example, but the methodology can be applied to a much wider class of supersymmetric models.
翻译:我们研究如何通过在背景优势和对信号和背景的可观测数据高度重叠的情况下通过机器学习提高LHC新物理搜索的敏感性。 我们使用两种不同的模型,即XGBoost和深神经网络,探索可观测数据之间的相互关系,并将这一方法与传统的截分和计数方法进行比较。 我们考虑不同的分析模型输出方法,发现一个模板通常比简单的截分效果更好。 通过沙皮分解,我们获得了对事件运动学和机器学习模型输出之间关系的更多了解。 我们考虑将一个超对称情景,以元性中微子为具体例子,但该方法可以适用于范围更广的超对称模型。