The core of many approaches for the resolution of variational inverse problems arising in signal and image processing consists of promoting the sought solution to have a sparse representation in a well-suited space. A crucial task in this context is the choice of a good sparsity prior that can ensure a good trade-off between the quality of the solution and the resulting computational cost. The recently introduced Convex-Non-Convex (CNC) strategy appears as a great compromise, as it combines the high qualitative performance of non-convex sparsity-promoting functions with the convenience of dealing with convex optimization problems. This work proposes a new variational formulation to implement CNC approach in the context of image denoising. By suitably exploiting duality properties, our formulation allows to encompass sophisticated directional total variation (DTV) priors. We additionally propose an efficient optimisation strategy for the resulting convex minimisation problem. We illustrate on numerical examples the good performance of the resulting CNC-DTV method, when compared to the standard convex total variation denoiser.
翻译:解决信号和图像处理中产生的不同反差问题的许多办法的核心在于促进所寻求的解决办法,在适合的空隙中代表很少,在这方面的一项关键任务是,事先选择良好的宽度,以确保在解决办法质量和由此产生的计算成本之间实现良好的权衡。最近推出的Convex-Non-Convex(CNC)战略似乎是一个很大的妥协,因为它将非conves-Sparission-promotion功能的高质量性能与处理convex优化问题的便利性结合起来。这项工作提出了在图像去除方面实施CNC方法的新的变异性配方。通过适当利用双重性,我们的配方可以包含复杂的方向性全面变异(DTV)前数。我们进一步建议对由此产生的convex最小化问题采取有效的优化战略。我们用数字例子说明,与标准的 convex-DTV方法相比,由此产生的CNC-DV方法的优良性能。