Non-adaptive group testing refers to the problem of inferring a sparse set of defectives from a larger population using the minimum number of simultaneous pooled tests. Recent positive results for noiseless group testing have motivated the study of practical noise models, a prominent one being dilution noise. Under the dilution noise model, items in a test pool have an i.i.d. probability of being diluted, meaning their contribution to a test does not take effect. In this setting, we investigate the number of tests required to achieve vanishing error probability with respect to existing algorithms and provide an algorithm-independent converse bound. In contrast to other noise models, we also encounter the interesting phenomenon that dilution noise on the resulting test outcomes can be offset by choosing a suitable noise-level-dependent Bernoulli test design, resulting in matching achievability and converse bounds up to order in the high noise regime.


翻译:非适应性组群测试是指使用最低数量的同时集合测试,从较大人群中推断出一组稀少的缺陷的问题。最近无噪音组测试的积极结果激发了对实际噪音模型的研究,一个突出的就是稀释噪音模型。在稀释噪音模型下,试验池中的物品有一个i.d. 稀释概率,这意味着它们对试验的贡献没有产生效果。在这个环境中,我们调查了在现有算法中实现消失误差概率所需的测试数量,并提供了一种依赖算法的对立圈。与其他噪音模型不同,我们还遇到一种有趣的现象,即通过选择一种适合噪音水平的伯努利测试设计,从而可以抵消由此产生的试验结果中的稀释噪音,从而在高噪声系统中将可感性与秩序相匹配。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员