Non-adaptive group testing refers to the problem of inferring a sparse set of defectives from a larger population using the minimum number of simultaneous pooled tests. Recent positive results for noiseless group testing have motivated the study of practical noise models, a prominent one being dilution noise. Under the dilution noise model, items in a test pool have an i.i.d. probability of being diluted, meaning their contribution to a test does not take effect. In this setting, we investigate the number of tests required to achieve vanishing error probability with respect to existing algorithms and provide an algorithm-independent converse bound. In contrast to other noise models, we also encounter the interesting phenomenon that dilution noise on the resulting test outcomes can be offset by choosing a suitable noise-level-dependent Bernoulli test design, resulting in matching achievability and converse bounds up to order in the high noise regime.
翻译:非适应性组群测试是指使用最低数量的同时集合测试,从较大人群中推断出一组稀少的缺陷的问题。最近无噪音组测试的积极结果激发了对实际噪音模型的研究,一个突出的就是稀释噪音模型。在稀释噪音模型下,试验池中的物品有一个i.d. 稀释概率,这意味着它们对试验的贡献没有产生效果。在这个环境中,我们调查了在现有算法中实现消失误差概率所需的测试数量,并提供了一种依赖算法的对立圈。与其他噪音模型不同,我们还遇到一种有趣的现象,即通过选择一种适合噪音水平的伯努利测试设计,从而可以抵消由此产生的试验结果中的稀释噪音,从而在高噪声系统中将可感性与秩序相匹配。