We show that for a fixed positive integer k one can efficiently decide if a finite algebra A admits a k-ary weak near unanimity operation by looking at the local behavior of the terms of A. We also observe that the problem of deciding if a given finite algebra has a quasi Taylor operation is solvable in polynomial time by looking, essentially, for local quasi Siggers operations.
翻译:我们发现,对于固定正整数 k 来说,对于固定正整数 k 来说,可以有效地决定一个有限的代数 A 是否承认一个k-ary弱的接近全体一致的操作,通过查看A 条件的当地行为。 我们还发现,决定一个特定限定的代数是否具有准泰勒操作的问题,在多元时间里是可以解决的,主要是通过查看当地的准锡人操作。