Recent studies showed that datasets used in fairness-aware machine learning for multiple protected attributes (referred to as multi-discrimination hereafter) are often imbalanced. The class-imbalance problem is more severe for the often underrepresented protected group (e.g. female, non-white, etc.) in the critical minority class. Still, existing methods focus only on the overall error-discrimination trade-off, ignoring the imbalance problem, thus amplifying the prevalent bias in the minority classes. Therefore, solutions are needed to solve the combined problem of multi-discrimination and class-imbalance. To this end, we introduce a new fairness measure, Multi-Max Mistreatment (MMM), which considers both (multi-attribute) protected group and class membership of instances to measure discrimination. To solve the combined problem, we propose a boosting approach that incorporates MMM-costs in the distribution update and post-training selects the optimal trade-off among accurate, balanced, and fair solutions. The experimental results show the superiority of our approach against state-of-the-art methods in producing the best balanced performance across groups and classes and the best accuracy for the protected groups in the minority class.


翻译:最近的研究显示,公平意识机器学习多重受保护属性(以下简称多重歧视)时使用的数据集往往不平衡,对少数群体中代表性往往不足的群体(如女性、非白人等)而言,等级不平衡问题更为严重,但现有方法仅侧重于总体错误-歧视权衡,忽视不平衡问题,从而扩大少数群体中普遍存在的偏见,因此,需要解决方案来解决多重歧视和阶级平衡的混合问题。为此,我们引入了新的公平措施,即多Max虐待(MMM),既考虑(多分配制)受保护群体成员,也考虑衡量歧视的类别成员。为解决这一合并问题,我们提议采取一种促进办法,将MMM-成本纳入分配更新和后培训,在准确、平衡和公平的解决办法中选择最佳的权衡。实验结果显示,我们的方法优于最平衡的跨群体和阶层业绩,以及保护群体的最佳准确性。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
0+阅读 · 2022年8月8日
Arxiv
0+阅读 · 2022年8月7日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员