We study the prediction with expert advice setting, where the aim is to produce a decision by combining the decisions generated by a set of experts, e.g., independently running algorithms. We achieve the min-max optimal dynamic regret under the prediction with expert advice setting, i.e., we can compete against time-varying (not necessarily fixed) combinations of expert decisions in an optimal manner. Our end-algorithm is truly online with no prior information, such as the time horizon or loss ranges, which are commonly used by different algorithms in the literature. Both our regret guarantees and the min-max lower bounds are derived with the general consideration that the expert losses can have time-varying properties and are possibly unbounded. Our algorithm can be adapted for restrictive scenarios regarding both loss feedback and decision making. Our guarantees are universal, i.e., our end-algorithm can provide regret guarantee against any competitor sequence in a min-max optimal manner with logarithmic complexity. Note that, to our knowledge, for the prediction with expert advice problem, our algorithms are the first to produce such universally optimal, adaptive and truly online guarantees with no prior knowledge.
翻译:我们用专家咨询意见来研究预测,目的是通过将一组专家(例如独立运行算法)产生的决定结合起来来作出一项决定。我们通过专家咨询意见来实现预测下的微量最大最佳动态遗憾,即我们能够以最佳的方式与专家决定的分时间(不一定固定)组合进行竞争。我们的终层次算法是真正在线的,没有以前的资料,例如时间范围或损失范围,文献中不同算法通常使用的时间范围。我们的遗憾保证和最小值下限都是从一般考虑得出的,即专家损失可能具有时间变化特性,而且可能没有限制。我们的算法可以适应有关损失反馈和决策的限制性假设。我们的保证是普遍的,即我们的终层次算法可以提供遗憾保证,防止以微量最佳的方式进行对数排序,因为对数复杂度是不同的算法。注意到,对于我们的知识来说,对专家咨询意见的预测,我们的算法是第一个提出这种普遍最佳、适应性和真正在线保证。