This work presents a decentralized motion planning framework for addressing the task of multi-robot navigation using deep reinforcement learning. A custom simulator was developed in order to experimentally investigate the navigation problem of 4 cooperative non-holonomic robots sharing limited state information with each other in 3 different settings. The notion of decentralized motion planning with common and shared policy learning was adopted, which allowed robust training and testing of this approach in a stochastic environment since the agents were mutually independent and exhibited asynchronous motion behavior. The task was further aggravated by providing the agents with a sparse observation space and requiring them to generate continuous action commands so as to efficiently, yet safely navigate to their respective goal locations, while avoiding collisions with other dynamic peers and static obstacles at all times. The experimental results are reported in terms of quantitative measures and qualitative remarks for both training and deployment phases.


翻译:这项工作提出了利用深层强化学习解决多机器人导航任务的分散化动议规划框架,开发了一个定制模拟器,以实验性地调查在三个不同环境中相互交流有限国家信息的4个合作型非超光层机器人的导航问题,采用了分散化动议规划的概念,并共同和共享政策学习,从而得以在随机环境中对这种方法进行强有力的培训和测试,因为代理商是相互独立的,表现出不同步的运动行为。由于向代理商提供稀少的观测空间,要求他们产生连续行动指令,以便高效、安全地前往各自的目标地点,同时避免与其他动态同行发生碰撞,避免随时出现固定障碍,实验结果在培训和部署阶段的定量措施和定性说明方面都有报告。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月11日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员