The Steiner $k$-eccentricity of a vertex $v$ of a graph $G$ is the maximum Steiner distance over all $k$-subsets of $V (G)$ which contain $v$. A linear time algorithm for calculating the Steiner $k$-eccentricity of a vertex on block graphs is presented. For general graphs, an $O(n^{\nu(G)+1}(n(G) + m(G) + k))$ algorithm is designed, where $\nu(G)$ is the cyclomatic number of $G$. A linear algorithm for computing the Steiner $3$-eccentricities of all vertices of a tree is also presented which improves the quadratic algorithm from [Discrete Appl.\ Math.\ 304 (2021) 181--195].
翻译:Steiner $k$+1}(n(G)+m(G)+k)美元算法是一般图,设计了美元(n)(G)+m(G)+(k)美元的算法,其中,美元为G$的周期数。还介绍了计算Stanley $k$-centrity的直线时间算法,用于计算区块图上顶端的 Steiner $k$-ccentrity。对于一般图,设计了美元(n)(G)+m(G)+k)美元的算法,其中,美元为G$的周期数。还介绍了计算Stannera 3$-centrentity的树冠形的线性算法,从[Discrete Appl.\ Math.\ 304(2021)181-195]中改进四边算算算法。