The notion of generalized rank invariant in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. Naturally, computing these rank invariants efficiently is a prelude to computing any of these derived structures efficiently. We show that the generalized rank invariant over a finite interval $I$ of a $\mathbb{Z}^2$-indexed persistence module $M$ is equal to the generalized rank invariant of the zigzag module that is induced on the boundary of $I$. Hence, we can compute the generalized rank over $I$ by computing the barcode of the zigzag module obtained by restricting the bifiltration inducing $M$ to the boundary of $I$. If $I$ has $t$ points, this computation takes $O(t^\omega)$ time where $\omega\in[2,2.373)$ is the exponent for matrix multiplication. Among others, we apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module $M$, determine whether $M$ is interval decomposable and, if so, compute all intervals supporting its summands. Our algorithm runs in time $O(t^{2\omega})$ vastly improving upon existing algorithms for the problem.


翻译:在多参数持久性的背景下,通用等级不变的概念已成为界定有趣的同质结构(如通用持久性图表)的一个重要要素。自然,高效计算这些等级异差是高效计算任何这些衍生结构的前奏。我们表明,在一定间隔内,通用等级异差为美元=美元=2美元,指数化持久性模块美元=2美元=2美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=

0
下载
关闭预览

相关内容

专知会员服务
144+阅读 · 2021年3月17日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
75+阅读 · 2021年1月10日
专知会员服务
40+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
KDD2020接受论文列表!338篇论文都在这了
专知
20+阅读 · 2020年6月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关主题
相关资讯
KDD2020接受论文列表!338篇论文都在这了
专知
20+阅读 · 2020年6月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员