In a $k$-party communication problem, the $k$ players with inputs $x_1, x_2, \ldots, x_k$, respectively, want to evaluate a function $f(x_1, x_2, \ldots, x_k)$ using as little communication as possible. We consider the message-passing model, in which the inputs are partitioned in an arbitrary, possibly worst-case manner, among a smaller number $t$ of players ($t<k$). The $t$-player communication cost of computing $f$ can only be smaller than the $k$-player communication cost, since the $t$ players can trivially simulate the $k$-player protocol. But how much smaller can it be? We study deterministic and randomized protocols in the one-way model, and provide separations for product input distributions, which are optimal for low error probability protocols. We also provide much stronger separations when the input distribution is non-product. A key application of our results is in proving lower bounds for data stream algorithms. In particular, we give an optimal $\Omega(\epsilon^{-2}\log(N) \log \log(mM))$ bits of space lower bound for the fundamental problem of $(1\pm\epsilon)$-approximating the number $\|x\|_0$ of non-zero entries of an $n$-dimensional vector $x$ after $m$ integer updates each of magnitude at most $M$, and with success probability $\ge 2/3$, in a strict turnstile stream. We additionally prove the matching $\Omega(\epsilon^{-2}\log(N) \log \log(T))$ space lower bound for the problem when we have access to a heavy hitters oracle with threshold $T$. Our results match the best known upper bounds when $\epsilon\ge 1/\operatorname{polylog}(mM)$ and when $T = 2^{\operatorname{poly}(1/\epsilon)}$ respectively. It also improves on the prior $\Omega(\epsilon^{-2}\log(mM) )$ lower bound and separates the complexity of approximating $L_0$ from approximating the $p$-norm $L_p$ for $p$ bounded away from $0$, since the latter has an $O(\epsilon^{-2}\log (mM))$ bit upper bound.


翻译:在(k) 党间通信问题中, 投入量为x_ 1, x_ 2, 美元玩家, x_k美元, 分别想要使用尽可能少的通信来评估一个函数$f(x_ 1, x_ 2, 焊多, x_k美元) 。 我们考虑的是信息传递模式, 输入以任意的方式分割, 可能是最坏的方式, 玩家以小数美元( t<k美元) 。 计算值为美元( t美元) 的美元玩家通信成本只能比 美元玩家通信成本小, 因为$( 美元) 美元, 因为$( 美元) 玩家可以轻巧地模拟美元玩家协议。 我们研究的是单路模式中的确定性和随机化协议, 当输入量分配为非产品时, 我们也会提供更强烈的分解。 我们的成果应用的是证明数据流算值为美元( 美元) 美元( 美元) 和 美元( 美元) 最低的游戏游戏中, 我们提供最优的磁 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年9月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年9月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员