Video frame interpolation(VFI) has witnessed great progress in recent years. While existing VFI models still struggle to achieve a good trade-off between accuracy and efficiency: fast models often have inferior accuracy; accurate models typically run slowly. However, easy samples with small motion or clear texture can achieve competitive results with simple models and do not require heavy computation. In this paper, we present an integrated pipeline which combines difficulty assessment with video frame interpolation. Specifically, it firstly leverages a pre-assessment model to measure the interpolation difficulty level of input frames, and then dynamically selects an appropriate VFI model to generate interpolation results. Furthermore, a large-scale VFI difficulty assessment dataset is collected and annotated to train our pre-assessment model. Extensive experiments show that easy samples pass through fast models while difficult samples inference with heavy models, and our proposed pipeline can improve the accuracy-efficiency trade-off for VFI.
翻译:暂无翻译