The estimation of racial disparities in health care, financial services, voting, and other contexts is often hampered by the lack of individual-level racial information in administrative records. In many cases, the law prohibits the collection of such information to prevent direct racial discrimination. As a result, many analysts have adopted Bayesian Improved Surname Geocoding (BISG), which combines individual names and addresses with the Census data to predict race. Although BISG tends to produce well-calibrated racial predictions, its residuals are often correlated with the outcomes of interest, yielding biased estimates of racial disparities. We propose an alternative identification strategy that corrects this bias. The proposed strategy is applicable whenever one's surname is conditionally independent of the outcome given their (unobserved) race, residence location, and other observed characteristics. Leveraging this identification strategy, we introduce a new class of models, Bayesian Instrumental Regression for Disparity Estimation (BIRDiE), that estimate racial disparities by using surnames as a high-dimensional instrumental variable for race. Our estimation method is scalable, making it possible to analyze large-scale administrative data. We also show how to address potential violations of the key identification assumptions. A validation study based on the North Carolina voter file shows that BIRDiE reduces error by up to 84% in comparison to the standard approaches for estimating racial differences in party registration. Open-source software is available which implements the proposed methodology.


翻译:对保健、金融服务、投票和其他背景下种族差异的估计往往因行政记录中缺乏个人种族信息而受阻,在保健、金融服务、投票和其他背景方面缺乏种族差异的估计往往受到行政记录中缺乏个人级别的种族信息的影响。在许多情况下,法律禁止收集这类信息,以防止直接种族歧视。因此,许多分析家采用了巴伊西亚改进Surname Geocoding(BISG),将个人姓名和地址与人口普查数据相结合,以预测种族;虽然BISG往往产生经充分校正的种族预测,但其剩余部分往往与兴趣结果相关,产生种族差异的偏差估计值。我们提出了纠正这一偏差的替代识别战略。如果一个人的姓氏有条件地独立于其(未观测的)种族、居住地点和其他观察到的特征的结果,则拟议的战略就适用。利用这一识别战略,我们引入了一个新的模式,即巴伊西亚工具递反偏差指数(BRRDi),通过使用姓氏来估计种族差异,从而得出高层次工具变量。我们的估计方法可以伸缩,从而有可能分析基于(未观察)种族)选举结果的A-84号的主要核实方法。我们还展示了在BLILILLA的核查方法。我们还显示了在进行大规模核查中如何评估时如何评估。</s>

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
0+阅读 · 2023年4月22日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员