The structural properties of mechanical metamaterials are typically studied with two-scale methods based on computational homogenization. Because such materials have a complex microstructure, enriched schemes such as second-order computational homogenization are required to fully capture their non-linear behavior, which arises from non-local interactions due to the buckling or patterning of the microstructure. In the two-scale formulation, the effective behavior of the microstructure is captured with a representative volume element (RVE), and a homogenized effective continuum is considered on the macroscale. Although an effective continuum formulation is introduced, solving such two-scale models concurrently is still computationally demanding due to the many repeated solutions for each RVE at the microscale level. In this work, we propose a reduced-order model for the microscopic problem arising in second-order computational homogenization, using proper orthogonal decomposition and a novel hyperreduction method that is specifically tailored for this problem and inspired by the empirical cubature method. Two numerical examples are considered, in which the performance of the reduced-order model is carefully assessed by comparing its solutions with direct numerical simulations (entirely resolving the underlying microstructure) and the full second-order computational homogenization model. The reduced-order model is able to approximate the result of the full computational homogenization well, provided that the training data is representative for the problem at hand. Any remaining errors, when compared with the direct numerical simulation, can be attributed to the inherent approximation errors in the computational homogenization scheme. Regarding run times for one thread, speed-ups on the order of 100 are achieved with the reduced-order model as compared to direct numerical simulations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
140+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
133+阅读 · 2019年9月24日
基于深度元学习的因果推断新方法
图与推荐
10+阅读 · 2020年7月21日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
10+阅读 · 2020年7月21日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员