Deep operator networks (DeepONets) are powerful architectures for fast and accurate emulation of complex dynamics. As their remarkable generalization capabilities are primarily enabled by their projection-based attribute, we investigate connections with low-rank techniques derived from the singular value decomposition (SVD). We demonstrate that some of the concepts behind proper orthogonal decomposition (POD)-neural networks can improve DeepONet's design and training phases. These ideas lead us to a methodology extension that we name SVD-DeepONet. Moreover, through multiple SVD analyses, we find that DeepONet inherits from its projection-based attribute strong inefficiencies in representing dynamics characterized by symmetries. Inspired by the work on shifted-POD, we develop flexDeepONet, an architecture enhancement that relies on a pre-transformation network for generating a moving reference frame and isolating the rigid components of the dynamics. In this way, the physics can be represented on a latent space free from rotations, translations, and stretches, and an accurate projection can be performed to a low-dimensional basis. In addition to flexibility and interpretability, the proposed perspectives increase DeepONet's generalization capabilities and computational efficiencies. For instance, we show flexDeepONet can accurately surrogate the dynamics of 19 variables in a combustion chemistry application by relying on 95% less trainable parameters than the ones of the vanilla architecture. We argue that DeepONet and SVD-based methods can reciprocally benefit from each other. In particular, the flexibility of the former in leveraging multiple data sources and multifidelity knowledge in the form of both unstructured data and physics-informed constraints has the potential to greatly extend the applicability of methodologies such as POD and PCA.


翻译:深操作器网络 (DeepONets) 是快速和准确地模拟复杂动态的强大结构。 由于它们的显著普及能力主要得益于其基于投影的特性, 我们调查与来自单值分解( SVD) 的低级技术的连接。 我们显示, 正确的正心分解( POD) 神经网络背后的一些概念可以改进 DeepONet 的设计和培训阶段。 这些想法导致我们命名为 SVD- DeepONet 的方法扩展。 此外, 通过多个 SVD 分析, 我们发现 DeepONet 从其基于投影的参数中继承了多种效率, 认为它代表着以对称为对称的动态的对等性参数的对等性效率差强。 在转移- POD 的工作激励下, 我们开发了弹性DOPOET, 我们开发了一个增强结构的系统化, 从而可以更精确地展示了前变异性化参考框架, 并分离了 。 在不断变异的化学结构中, 我们的变异性结构中, 能够更精确地展示 。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员