We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program $f$, and the goal is to find an input $x$ which makes $f$ output "True". The puzzles are objective in that each one is specified entirely by the source code of its verifier $f$, so evaluating $f(x)$ is all that is needed to test a candidate solution $x$. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems that are immediately obvious to human programmers (but not necessarily to AI), to classic programming puzzles (e.g., Towers of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). The objective nature of P3 readily supports self-supervised bootstrapping. We develop baseline enumerative program synthesis and GPT-3 solvers that are capable of solving easy puzzles -- even without access to any reference solutions -- by learning from their own past solutions. Based on a small user study, we find puzzle difficulty to correlate between human programmers and the baseline AI solvers.


翻译:我们引入了一种新型的编程挑战,称为编程拼图,作为对程序合成的客观和全面的评估,并发布一个开放源数据集(P3) Python 编程拼图(P3) 。每个拼图都由一个简短的 Python 程序来定义,目标是找到一个输入方x$,使美元输出成为“ True ” 。这个拼图是客观的,因为每个输入方的拼图完全由其核查器源代码 $f.f(x) 美元来指定,因此,要测试一个候选解决方案,就需要评估美元(x) 。它们不需要关键或输入/输出示例,也不依赖于自然语言理解。数据集是全面的,因为它涉及一系列困难和领域的问题,从人类程序(但不一定是AI)直接可见的小串操作问题到典型的编程拼图拼图(例如河内塔),到访谈/竞争性拼图问题(例如动态编程),到算法和数学(e.ving) 的解算和数学长期的解算(例如,不易读的算器)的解算和数学解算方法基础基础基础基础研究,我们很容易地支持了自己的解算的自我学习基础的路径。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
1+阅读 · 2021年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员