Sentiment analysis of social media comments is very important for review analysis. Many online reviews are sarcastic, humorous, or hateful. This sarcastic nature of these short texts change the actual sentiments of the review as predicted by a machine learning model that attempts to detect sentiment alone. Thus, having a model that is explicitly aware of these features should help it perform better on reviews that are characterized by them. Several research has already been done in this field. This paper deals with sarcasm detection on reddit comments. Several machine learning and deep learning algorithms have been applied for the same but each of these models only take into account the initial text instead of the conversation which serves as a better measure to determine sarcasm. The other shortcoming these papers have is they rely on word embedding for representing comments and thus do not take into account the problem of polysemy(A word can have multiple meanings based on the context in which it appears). These existing modules were able to solve the problem of capturing inter sentence contextual information but not the intra sentence contextual information. So we propose a novel architecture which solves the problem of sarcasm detection by capturing intra sentence contextual information using a novel contextual attention mechanism. The proposed model solves the problem of polysemy also by using context enriched language modules like ELMO and BERT in its first component. This model comprises a total of three major components which takes into account inter sentence, intra sentence contextual information and at last use a convolutional neural network for capturing global contextual information for sarcasm detection. The proposed model was able to generate decent results and cleared showed potential to perform state of the art if trained on a larger dataset.


翻译:对社交媒体评论的感官分析对于审查分析非常重要。 许多在线审查都是讽刺、幽默或仇恨性的。 许多在线审查都是讽刺、幽默或仇恨性的。 这些短文的讽刺性性质改变了审查的实际情绪, 正如一个试图单独检测情绪的机器学习模型所预测的那样。 因此, 拥有一个明确了解这些特点的模型, 应该有助于在以这些特点为特征的审查中更好地发挥作用。 已经在这一领域做了几项研究。 本文涉及在重新编辑评论中进行讽刺性探测。 一些机器学习和深层次学习的算法已经用于同一目的, 但其中每一种模型都只考虑到最初的文本, 而不是作为确定讽刺的更好措施的谈话。 另一种短文的讽刺性内容是, 使用一个明确表达这些特征的模型, 获取内部变色素的模型, 并且使用内部变色素的图像, 使用内部变色素的变色工具, 在内部变色的变色图像中, 将一个新式的变色变色的变色模型, 在内部变色的变色图像中, 显示一个新的变色的变色变色的变色图像, 在内部变色的变色的变色的变色的变色的图像中, 的变色变形变色的变色的变形变色的变色的变色的变色的变的变的变色的变色变色色色变的变的变的变的变的变式的变的变式的变式的变式的变式的变的变形体的变形变色中 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员