Sarcasm is a linguistic expression often used to communicate the opposite of what is said, usually something that is very unpleasant with an intention to insult or ridicule. Inherent ambiguity in sarcastic expressions, make sarcasm detection very difficult. In this work, we focus on detecting sarcasm in textual conversations from various social networking platforms and online media. To this end, we develop an interpretable deep learning model using multi-head self-attention and gated recurrent units. Multi-head self-attention module aids in identifying crucial sarcastic cue-words from the input, and the recurrent units learn long-range dependencies between these cue-words to better classify the input text. We show the effectiveness of our approach by achieving state-of-the-art results on multiple datasets from social networking platforms and online media. Models trained using our proposed approach are easily interpretable and enable identifying sarcastic cues in the input text which contribute to the final classification score. We visualize the learned attention weights on few sample input texts to showcase the effectiveness and interpretability of our model.
翻译:讽刺语是一种语言表达方式,通常用来交流与所言相反的言语,通常是非常不愉快的东西,目的是侮辱或嘲笑。讽刺语表达方式中固有的模糊性,使得讽刺语的探测非常困难。在这项工作中,我们侧重于从各种社交网络平台和在线媒体的文字对话中发现讽刺性。为此,我们开发了一个可解释的深层次学习模式,使用多头自留和封闭的经常性单元。多头自留模块帮助从输入中找出关键的讽刺性提示词,经常单位学习这些提示词之间的长期依赖性,以更好地对输入文本进行分类。我们通过在社交网络平台和在线媒体的多个数据集中取得最新结果来展示我们的方法的有效性。使用我们拟议方法培训的模型很容易被解释,并能够识别输入文本中有助于最后分类分数的讽刺性提示。我们视觉了少数样本输入文本中学习到的注意度,以展示我们模型的有效性和可解释性。