This work concerns the minimization of the pseudospectral abscissa of a matrix-valued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as the global convergence of the minimal values of the reduced problem to the minimal value of the original problem, and a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the $\mathcal{H}_\infty$ norm; the optimized pseudospectral abscissa provide quantitative information about the worst-case transient behavior, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and $\mathcal{H}_\infty$ norm that would normally require initial guesses yielding asymptotically stable systems.
翻译:这项工作涉及将一个取决于分析参数的矩阵值值函数的假光谱缩影最小化。 问题的动机是具有优化参数的线性控制系统的稳健稳定性和瞬态行为考量。 我们描述一个子空间程序, 以应对矩阵值函数大小大时的设置。 拟议的子空间程序解决了通过将矩阵值函数限制在小空间(其尺寸逐渐增加)而获得的减少问题的序列。 它具有一些可取的特征, 例如, 降低的问题的最小值与原始问题的最小值趋同, 以及由降低问题的直线性控制系统的错误所显示的超直线性趋同。 在数学术语中, 我们所考虑的问题是一个大型的非convex最低值小型缩影值功能。 将最小值函数限制在最小值值值的子空间框架中, 与限制的最小值值最差值函数相匹配, 需要特殊处理, 使初始值和双值的直线性直径直线性直径直线性偏差的直线性趋趋趋趋趋趋近。 通常情况下, 将硬性值函数值值值值值值值值值值值值值值值值值值值最小化为最低值为最低值, 。