We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel \textit{label consensus approach} that reduces label inconsistency caused by objects' movements from one node's limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solution's real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios. We also release source code at https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT for our fusion method to foster developments in DMOT algorithms.
翻译:我们考虑使用分布式传感器网络追踪多个对象的棘手问题。 在实际设置观点有限(FoVs)、计算动力和通信资源的节点时, 我们开发了一个新颖的分布式多对象跟踪算法。 为了实现这一目标, 我们首先正式确定标签一致性的概念, 确定一个足够的条件来实现这一目标, 并开发一个新的\ textit{ label 共识 方法 来减少由于物体移动从一个节点有限的FoV到另一个节点造成的标签不一致。 其次, 我们开发一个分布式多对象聚合算法, 将局部多目标国家估算结合起来, 而不是本地多对象密度。 这样算法: 比多对象密度聚合方法要少得多的处理时间; ii) 通过考虑最佳的子定位任务(OSPA) 来跟踪数个扫描中的错误, 而不是一次扫描;iii) 对本地多点跟踪跟踪技术来说是不可忽视的, 只需要每个节点提供一组估计轨道。 因此, 没有必要假设节点A(i) 需要比多对象点的计算方法更精确性地显示我们的拟议多点计算方法。