Literature-based discovery (LBD) aims to discover valuable latent relationships between disparate sets of literatures. This paper presents the first inclusive scientometric overview of LBD research. We utilize a comprehensive scientometric approach incorporating CiteSpace to systematically analyze the literature on LBD from the last four decades (1986-2020). After manual cleaning, we have retrieved a total of 409 documents from six bibliographic databases and two preprint servers. The 35 years' history of LBD could be partitioned into three phases according to the published papers per year: incubation (1986-2003), developing (2004-2008), and mature phase (2009-2020). The annual production of publications follows Price's law. The co-authorship network exhibits many subnetworks, indicating that LBD research is composed of many small and medium-sized groups with little collaboration among them. Science mapping reveals that mainstream research in LBD has shifted from baseline co-occurrence approaches to semantic-based methods at the beginning of the new millennium. In the last decade, we can observe the leaning of LBD towards modern network science ideas. In an applied sense, the LBD is increasingly used in predicting adverse drug reactions and drug repurposing. Besides theoretical considerations, the researchers have put a lot of effort into the development of Web-based LBD applications. Nowadays, LBD is becoming increasingly interdisciplinary and involves methods from information science, scientometrics, and machine learning. Unfortunately, LBD is mainly limited to the biomedical domain. The cascading citation expansion announces deep learning and explainable artificial intelligence as emerging topics in LBD. The results indicate that LBD is still growing and evolving.


翻译:基于文学的发现(LBD)旨在发现不同文献集之间宝贵的潜在关系。本文展示了LBD研究的首个包容性科学计量概览。我们使用包含CiteSpace的综合性科学计量方法系统分析过去40年(1986-2020年)以来LBD文献文献。在人工清理后,我们从六个书目数据库和两个预印服务器中共检索了409份文件。LBD的35年历史可以按照每年出版的论文分为三个阶段:潜入(1986-2003年)、开发(2004-2008年)和成熟阶段(2009-2020年)。出版物的年度制作遵循了价格法。共同作者网络展示了许多子网络,表明LBD研究由许多中小团体组成,它们之间很少合作。科学绘图显示LB的主流研究从基线共存到基于语言的方法在新的千年开始转变。在过去十年中,我们可以看到LBD的缩略图向现代网络科学理念的缩略图。在应用过程中,LB越来越多地使用LB的理论学进, 并不断将LB的理论学学进, 正在逐渐地解释LB 。LB 正在将LB 学会的理论学进进进进进 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
101+阅读 · 2020年3月4日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员