Automated program repair is an emerging technology that seeks to automatically rectify bugs and vulnerabilities using learning, search, and semantic analysis. Trust in automatically generated patches is necessary for achieving greater adoption of program repair. Towards this goal, we survey more than 100 software practitioners to understand the artifacts and setups needed to enhance trust in automatically generated patches. Based on the feedback from the survey on developer preferences, we quantitatively evaluate existing test-suite based program repair tools. We find that they cannot produce high-quality patches within a top-10 ranking and an acceptable time period of 1 hour. The developer feedback from our qualitative study and the observations from our quantitative examination of existing repair tools point to actionable insights to drive program repair research. Specifically, we note that producing repairs within an acceptable time-bound is very much dependent on leveraging an abstract search space representation of a rich enough search space. Moreover, while additional developer inputs are valuable for generating or ranking patches, developers do not seem to be interested in a significant human-in-the-loop interaction.


翻译:自动程序修理是一种新兴技术,它寻求利用学习、搜索和语义分析自动纠正错误和弱点。信任自动生成的补丁对于实现更多采用程序修理是必要的。为了实现这一目标,我们调查了100多名软件从业人员,以了解对自动生成的补丁的信任程度。根据开发者偏好调查的反馈,我们量化地评估了现有基于测试的适合程序修理工具。我们发现,它们无法在10级最高排名和1小时可接受的时间内产生高质量的补丁。我们定性研究的开发者反馈以及现有修理工具定量检查的观察表明,在可操作的洞察中发现,推动方案修理研究。具体地说,我们指出,在可接受的时限内进行修理在很大程度上取决于利用一个具有丰富搜索空间的抽象搜索空间。此外,虽然额外的开发者投入对于产生或排列补丁很有价值,但开发者似乎对重大的人类在现场的互动并不感兴趣。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
专知会员服务
39+阅读 · 2020年9月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员