Assessing the personality of software engineers may help to match individual traits with the characteristics of development activities such as code review and testing, as well as support managers in team composition. However, self-assessment questionnaires are not a practical solution for collecting multiple observations on a large scale. Instead, automatic personality detection, while overcoming these limitations, is based on off-the-shelf solutions trained on non-technical corpora, which might not be readily applicable to technical domains like Software Engineering (SE). In this paper, we first assess the performance of general-purpose personality detection tools when applied to a technical corpus of developers' emails retrieved from the public archives of the Apache Software Foundation. We observe a general low accuracy of predictions and an overall disagreement among the tools. Second, we replicate two previous research studies in SE by replacing the personality detection tool used to infer developers' personalities from pull-request discussions and emails. We observe that the original results are not confirmed, i.e., changing the tool used in the original study leads to diverging conclusions. Our results suggest a need for personality detection tools specially targeted for the software engineering domain.
翻译:评估软件工程师的个性可能有助于将个人特征与诸如代码审查和测试等发展活动的特点以及团队构成方面的支助管理人员等支助管理人员的特征相匹配。然而,自我评估调查表并不是大规模收集多种观测结果的实用解决办法。相反,在克服这些限制的同时,自动性能检测是基于非技术公司培训的非现成解决方案,这些解决方案可能不易适用于软件工程等技术领域。在本文件中,我们首先评估通用性能检测工具在应用从阿帕奇软件基金会公共档案中检索的开发者电子邮件技术库时的性能。我们观察到,预测的准确性普遍较低,而且各种工具之间总体上存在分歧。第二,我们复制了在SE进行的两项前两次研究,取代了用于从拉动请求讨论和电子邮件中推断开发者人格的性能检测工具。我们发现,原始结果没有得到证实,即改变原始研究中使用的工具导致不同的结论。我们的研究结果表明,需要专门针对软件工程领域的个性检测工具。