The idea of intersectionality has become a frequent topic of discussion both in academic sociology, as well as among popular movements for social justice such as Black Lives Matter, intersectional feminism, and LGBT rights. Intersectionality proposes that an individual's experience of society has aspects that are irreducible to the sum of one's various identities considered individually, but are "greater than the sum of their parts." In this work, we show that the effects of intersectional identities can be statistically observed in empirical data using information theory. We show that, when considering the predictive relationship between various identities categories such as race, sex, and income (as a proxy for class) on outcomes such as health and wellness, robust statistical synergies appear. These synergies show that there are joint-effects of identities on outcomes that are irreducible to any identity considered individually and only appear when specific categories are considered together (for example, there is a large, synergistic effect of race and sex considered jointly on income irreducible to either race or sex). We then show using synthetic data that the current gold-standard method of assessing intersectionalities in data (linear regression with multiplicative interaction coefficients) fails to disambiguate between truly synergistic, greater-than-the-sum-of-their-parts interactions, and redundant interactions. We explore the significance of these two distinct types of interactions in the context of making inferences about intersectional relationships in data and the importance of being able to reliably differentiate the two. Finally, we conclude that information theory, as a model-free framework sensitive to nonlinearities and synergies in data, is a natural method by which to explore the space of higher-order social dynamics.
翻译:交叉性的概念已成为学术社会学以及诸如Black Lives Matter、交叉女性主义和男女同性恋、双性恋、双性恋和变性者权利等社会公正群众运动之间经常讨论的话题。 交叉性表明,个人社会经验的各方面不可减损于个体考虑的不同身份的总和,但“比其部分的总和大” 。 在这项工作中,我们表明,交叉性特征的影响可以在使用信息理论的经验数据中从统计学上观察到。 我们表明,在考虑种族、性别和收入等社会公正的各种身份类别之间的预测关系(作为阶级的理论代言),在健康和健康、稳健的统计协同性等结果方面。 这些协同性表明,个人社会经验中的一些特性的共同影响不可减损于个体考虑的不同身份的总和性,但只有在对特定类别(例如,种族和性别共同考虑的种族和性别对收入模式有很大的协同效应)时,我们用合成数据显示,目前评估数据中交叉性关系的黄金标准方法在数据中具有更高的重要性(与多种方法互动性互动性之间,我们无法得出更深层次的对比性互动性结论。