In this paper, we raise up an emerging personal data protection problem where user personal data (e.g. images) could be inappropriately exploited to train deep neural network models without authorization. To solve this problem, we revisit traditional watermarking in advanced machine learning settings. By embedding a watermarking signature using specialized linear color transformation to user images, neural models will be imprinted with such a signature if training data include watermarked images. Then, a third-party verifier can verify potential unauthorized usage by inferring the watermark signature from neural models. We further explore the desired properties of watermarking and signature space for convincing verification. Through extensive experiments, we show empirically that linear color transformation is effective in protecting user's personal images for various realistic settings. To the best of our knowledge, this is the first work to protect users' personal data from unauthorized usage in neural network training.


翻译:在本文中,我们提出了一个新出现的个人数据保护问题,即用户个人数据(例如图像)可能未经授权被不当利用来训练深神经网络模型。为了解决这个问题,我们重新审视了先进机器学习环境中的传统水标记。通过将使用专门的线性色彩转换的水标记标志嵌入用户图像,如果培训数据包括水标记图像,神经模型将印上这样的标志。然后,第三方核查员可以通过从神经模型推断水标记签字(例如图像)来核实潜在的未经授权的使用。我们进一步探索水标记和签字空间的预期特性,以便进行令人信服的核查。通过广泛的实验,我们从经验上表明线性颜色转换对于保护用户个人图像以适应各种现实环境是有效的。据我们所知,这是在神经网络培训中保护用户个人数据不被未经授权使用的第一个工作。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
学术型ipad pro配置分享
专知
29+阅读 · 2018年12月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Privacy-Preserving News Recommendation Model Learning
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
学术型ipad pro配置分享
专知
29+阅读 · 2018年12月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员