Radio frequency (RF) spike noise is a common source of exogenous image corruption in MRI. Spikes occur as point-like disturbances of $k$-space that lead to global sinusoidal intensity errors in the image domain. Depending on the amplitude of the disturbances and their locations in $k$-space, the effect of a spike can be significant, often ruining the reconstructed images. Here we present both a spike detection method and a related data correction method for automatic correction of RF spike noise. To detect spikes, we found the $k$-space points that have the most significant effect on the total variation of the image. To replace the spikes, we used a compressed sensing reconstruction in which only the points thought to be corrupted are unconstrained. We demonstrated our technique in two cases: (1) in vivo gradient echo brain data with artificially corrupted points and (2) actual, complex scanner data from a whole-body fat-water imaging gradient echo protocol corrupted by spikes at uncertain locations. Our method allowed near-perfect detection and correction with no human intervention. We calculated Matthews correlation coefficients and sensitivities above 0.95 for a maximum of 0.78\% corruption in synthetically corrupted in vivo brain data. We also found specificities above 0.9994.


翻译:高射电频率(RF) 峰值噪音是MRI中外星图像腐败的一个常见来源。 Spikes 发生于点似点的美元空间扰动,导致图像域出现全球正弦性强度错误。取决于扰动的振幅及其在美元-空间的所在地大小,悬浮效应可能很大,往往会破坏重建后的图像。这里我们既展示了一种峰值探测方法,也展示了自动修正RF峰值噪音的相关数据更正方法。为了探测峰值,我们发现美元-空间点对图像的全面变异影响最大。为了取代峰值,我们使用了压缩的感应重建,其中仅对认为要腐蚀的点进行了不受控制。我们在两个案例中展示了我们的技术:(1) 在活性梯度梯度回脑数据与人工腐蚀点发生反响,以及(2) 从全体脂肪成像梯度梯度的感应谱中产生的实际复杂的扫描数据被不确定地点的峰值腐蚀了。我们的方法允许在人类的干预下进行近速检测和校正。我们计算出在0.98-99 大脑腐蚀数据中,我们还在0.75上计算出超过0.75的概率数据。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员