The emerging technology of snapshot compressive imaging (SCI) enables capturing high dimensional (HD) data in an efficient way. It is generally implemented by two components: an optical encoder that compresses HD signals into a 2D measurement and an algorithm decoder that retrieves the HD data upon the hardware-encoded measurement. Over a broad range of SCI applications, hyperspectral imaging (HSI) and video compressive sensing have received significant research attention in recent years. Among existing SCI reconstruction algorithms, deep learning-based methods stand out as their promising performance and efficient inference. However, the deep reconstruction network may suffer from overlarge model size and highly-specialized network design, which inevitably lead to costly training time, high memory usage, and limited flexibility, thus discouraging the deployments of SCI systems in practical scenarios. In this paper, we tackle the above challenges by proposing a simple yet highly efficient reconstruction method, namely stacked residual network (SRN), by revisiting the residual learning strategy with nested structures and spatial-invariant property. The proposed SRN empowers high-fidelity data retrieval with fewer computation operations and negligible model size compared with existing networks, and also serves as a versatile backbone applicable for both hyperspectral and video data. Based on the proposed backbone, we first develop the channel attention enhanced SRN (CAE-SRN) to explore the spectral inter-dependencies for fine-grained spatial estimation in HSI. We then employ SRN as a deep denoiser and incorporate it into a generalized alternating projection (GAP) framework -- resulting in GAP-SRN -- to handle the video compressive sensing task. Experimental results demonstrate the state-of-the-art performance, high computational efficiency of the proposed SRN on two SCI applications.


翻译:光速压缩成像(SCI)的新兴技术使光速压缩成像(SCI)能够以高效的方式捕捉高维(HD)数据。它通常由两个部分实施:一个光学编码器,将HD信号压缩成2D测量,一个算法解码器,在硬件编码测量中检索HD数据。在广泛的SCI应用中,超光谱成像(HSI)和视频压缩感测在最近几年引起了大量的研究关注。在现有的SCI重建算法中,深层基于空间空间的学习方法与其有希望的性能和高效的推断。然而,深层重建网络可能因模型规模过大和高度专业化的网络设计而受到影响,这不可避免地导致花费昂贵的培训时间、高记忆使用率和有限的灵活性解码器,从而阻止SCI系统在实际情况下的部署。在本文中,我们提出了简单而高效的重建方法,即堆积的残余网络,通过嵌成的内嵌式的网络和空间的变异性财产,拟议的SRNRN将高纤维数据转换成高的网络,从而进行高频流流化的智能智能数据检索,从而进行高额的智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能运行。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员