With the development of traffic prediction technology, spatiotemporal prediction models have attracted more and more attention from academia communities and industry. However, most existing researches focus on reducing model's prediction error but ignore the error caused by the uneven distribution of spatial events within a region. In this paper, we study a region partitioning problem, namely optimal grid size selection problem (OGSS), which aims to minimize the real error of spatiotemporal prediction models by selecting the optimal grid size. In order to solve OGSS, we analyze the upper bound of real error of spatiotemporal prediction models and minimize the real error by minimizing its upper bound. Through in-depth analysis, we find that the upper bound of real error will decrease then increase when the number of model grids increase from 1 to the maximum allowed value. Then, we propose two algorithms, namely Ternary Search and Iterative Method, to automatically find the optimal grid size. Finally, the experiments verify that the error of prediction has the same trend as its upper bound, and the change trend of the upper bound of real error with respect to the increase of the number of model grids will decrease then increase. Meanwhile, in a case study, by selecting the optimal grid size, the order dispatching results of a state-of-the-art prediction-based algorithm can be improved up to 13.6%, which shows the effectiveness of our methods on tuning the region partition for spatiotemporal prediction models.
翻译:随着交通流量预测技术的发展,时空预测模型吸引了学术界和行业越来越多的关注。然而,大多数现有研究侧重于减少模型预测错误,但忽视了区域空间事件分布不均造成的错误。在本文中,我们研究一个区域分割问题,即最佳网格规模选择问题(OGSS),其目的是通过选择最佳网格规模,最大限度地减少超时预测模型的真正误差的真正误差。为了解决OGSS,我们分析了超时预测模型实际误差的上限,并通过尽量减少其上限,将实际误差降到最低。通过深入分析,我们发现当模型网格数量从1增加到最大允许值时,实际误差的上限就会减少。然后,我们提出了两种算法,即最佳网格规模搜索和迭代方法,以自动找到最佳网格规模。最后,实验证实,预测误差的趋势与其上限相同,以及实际误差的上限趋势与模型数目的增加有关,将实际误差的上限缩小。通过深度分析,我们发现当模型从1到最大允许值值时,实际误差的上限将减少。同时,最佳网格网格规模的上限将降低。在13个区域中,将显示最优化的递算结果的递增后将显示。在13的递增后,最佳的递增后,将显示的递增后,将显示。在13次的递增后,将显示的递增后算法方法将显示。