In this paper, we investigate the transferability limitations when using deep learning models, for semantic segmentation of pneumonia-infected areas in CT images. The proposed approach adopts a 4 channel input; 3 channels based on Hounsfield scale, plus one channel (binary) denoting the lung area. We used 3 different, publicly available, CT datasets. If the lung area mask was not available, a deep learning model generates a proxy image. Experimental results suggesting that transferability should be used carefully, when creating Covid segmentation models; retraining the model more than one times in large sets of data results in a decrease in segmentation accuracy.
翻译:在本文中,我们研究了在使用深层学习模型时的可转移性限制,用于CT图像中肺部感染地区的语义分解。拟议方法采用了4个频道输入;3个基于Hounsfield规模的频道,加上1个标明肺部面积的频道(二进制)。我们使用了3个不同的、公开的CT数据集。如果没有肺部遮罩,深层学习模型会产生一个替代图像。实验结果显示,在创建Covid分解模型时,应谨慎使用可转移性;在大型数据集中,对模型进行超过1次的再培训导致分解准确性下降。