We propose a Gaussian manifold variational auto-encoder (GM-VAE) whose latent space consists of a set of Gaussian distributions. It is known that the set of the univariate Gaussian distributions with the Fisher information metric form a hyperbolic space, which we call a Gaussian manifold. To learn the VAE endowed with the Gaussian manifolds, we propose a pseudo-Gaussian manifold normal distribution based on the Kullback-Leibler divergence, a local approximation of the squared Fisher-Rao distance, to define a density over the latent space. In experiments, we demonstrate the efficacy of GM-VAE on two different tasks: density estimation of image datasets and environment modeling in model-based reinforcement learning. GM-VAE outperforms the other variants of hyperbolic- and Euclidean-VAEs on density estimation tasks and shows competitive performance in model-based reinforcement learning. We observe that our model provides strong numerical stability, addressing a common limitation reported in previous hyperbolic-VAEs.
翻译:我们建议高斯多元自动编码器(GM-VAE),其潜在空间由一组高斯分布组成。众所周知,一套与Fisher Inforce Inforce Inform Inform信息度的单向高斯分布构成一个双曲空间,我们称之为高斯多元体。要学习高斯多元体,我们提议一种假的加西元正常分布,其依据是Kullback-Leibel差异,即方形远距离的本地近似,以定义潜空空间的密度。在实验中,我们展示了GM-VAE在两个不同任务上的效力:图像数据集的密度估计和模型辅助学习的环境建模。GM-VAE在密度估计任务上比其他多偏重体和Euclidean-VAE的变体,并显示基于模型的强化学习中的竞争性表现。我们观察到,我们的模型提供了强大的数字稳定性,解决了以前双向VAE中报告的常见限制。