Conditional density models f(y|x), where x represents a potentially high-dimensional feature vector, are an integral part of uncertainty quantification in prediction and Bayesian inference. However, such models can be difficult to calibrate. While existing validation techniques can determine whether an approximated conditional density is compatible overall with a data sample, they lack practical procedures for identifying, localizing, and interpreting the nature of (statistically significant) discrepancies over the entire feature space. In this paper, we present more discerning diagnostics such as (i) the "Local Coverage Test" (LCT), which is able to distinguish an arbitrarily misspecified model from the true conditional density of the sample, and (ii) "Amortized Local P-P plots" (ALP), which can quickly provide interpretable graphical summaries of distributional differences at any location x in the feature space. Our validation procedures scale to high dimensions, and can potentially adapt to any type of data at hand. We demonstrate the effectiveness of LCT and ALP through a simulated experiment and a realistic application to parameter inference for galaxy images.


翻译:条件密度模型f(y ⁇ x)是X代表潜在高维特征矢量的,是预测和巴伊西亚推断中不确定性量化的一个有机组成部分,但这种模型可能难以校准。虽然现有的验证技术可以确定大约的有条件密度总体上是否与数据样本相容,但它们缺乏查明、定位和解释整个特征空间(具有统计重要性的)差异性质的实用程序。在本文中,我们提供了更多的辨别诊断,如(一)“地方覆盖测试”,它能够将任意确定的模型与抽样的真正条件密度区分开来,以及(二)“模拟实验和对星系图像参数的现实应用,从而能够迅速提供可解释的本地P-P图示,该图解可快速提供特征空间任何地点x的分布差异的图形摘要。我们的验证程序尺度达到高维度,并有可能适应手头的任何类型的数据。我们通过模拟实验和对星系图像参数进行实际应用来证明LCT和ALP的有效性。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员