Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are a promising concept for versatile structural applications. They have been shown to display exceptional mechanical properties including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work established the theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only achievable for structures with unrealistically high friction coefficients and, therefore, it remains unknown if it is achievable in actual structures. Here, we propose, inspired by biological systems, a hierarchical approach for topological interlocking which overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures with geometrically designed surface morphologies, which increases the effective frictional strength of the interfaces, and hence enables us to achieve the theoretical limit with realistic friction coefficients. Using numerical simulations, we examine the effect of sinusoidal surface morphology with controllable amplitude and wavelength on the maximum load-carrying capacity of the structure. Our study discusses various effects of architecturing the surface morphology of beam-like topological interlocked structures, and most notably, it demonstrates its ability to significantly enhance the structure's mechanical performance.
翻译:地形间材料和结构是没有坚固的交错建筑块的组合,是多功能结构应用的一个很有希望的概念。它们已经表现出非常的机械性能,包括硬性、强度和坚韧性等杰出的组合,超越了共同工程材料所能达到的组合。最近的工作为光状结构的强度和坚韧性确定了理论上限。然而,这一理论限制只适用于具有不切实际的高摩擦系数的结构,因此,如果在实际结构中是可以实现的,它仍然是未知的。在这里,我们提议,在生物系统启发下,对顶层间闭合采取一种等级办法,克服了这些局限性,为优化机械性能提供了一条路径。我们考虑的是具有几何式设计的表层间结构,这增加了界面的有效摩擦强度,从而使我们能够用现实的摩擦系数达到理论限度。我们用数字模拟来研究正统表面形态形态形态形态的影响,在最大负载力结构结构的顶部可控性能和波长上,我们的研究展示了其最深层性能。