Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
翻译:量子计算方面的最近进展引起人们相当重视为量子计算机建立现实的应用和使用。然而,设计一个合适的量子电路结构需要专家知识。例如,设计一个量子门序列以产生一个尽可能少的量子状态。我们提出一个量子结构搜索框架,其动力是深强化学习(DRL)来应对这一挑战。在拟议的框架中,DRL代理只能访问保利-X美元、美元、预期值美元和一套为学习目标量子状态而预先确定的量子操作,并且通过优势的演算法(A2C)和准政策优化算法加以优化。我们展示了多QGHZ州成功的量子门序列,而没有将代理中的任何量子物理学知识编码。我们的框架的设计相当笼统,可以与其他DRL结构或优化方法一起用于研究许多量子状态的门合成和汇编。