We study the complexity of Stein Variational Gradient Descent (SVGD), which is an algorithm to sample from $\pi(x) \propto \exp(-F(x))$ where $F$ smooth and nonconvex. We provide a clean complexity bound for SVGD in the population limit in terms of the Stein Fisher Information (or squared Kernelized Stein Discrepancy), as a function of the dimension of the problem $d$ and the desired accuracy $\varepsilon$. Unlike existing work, we do not make any assumption on the trajectory of the algorithm. Instead, our key assumption is that the target distribution satisfies Talagrand's inequality T1.
翻译:我们研究Stein Fisher Information(或平方内脏化 Stein Development Stein Reformission)的复杂程度,这是一种从$\pi(x)\ propto\ exp (-F(x)) \ exp (-F(x))) 中抽取样本的算法。我们从 Stein Fisher Information (或平方内脏化 Stein Stein Condition) 中为SVGD提供人口限制的简单复杂程度,作为问题层面的一元和所期望的准确性($dd) 和 $\varepsilon $的函数。 与现有工作不同, 我们对算法的轨迹不作任何假设。 相反,我们的关键假设是目标分布满足了T1 Talagrand的不平等 T1 。