Biometric data is a rich source of information that can be used to identify individuals and infer private information about them. To mitigate this privacy risk, anonymization techniques employ transformations on clear data to obfuscate sensitive information, all while retaining some utility of the data. Albeit published with impressive claims, they sometimes are not evaluated with convincing methodology. We hence are interested to which extent recently suggested anonymization techniques for obfuscating facial images are effective. More specifically, we test how easily they can be automatically reverted, to estimate the privacy they can provide. Our approach is agnostic to the anonymization technique as we learn a machine learning model on the clear and corresponding anonymized data. We find that 10 out of 14 tested face anonymization techniques are at least partially reversible, and six of them are at least highly reversible.
翻译:生物计量数据是丰富的信息来源,可用于识别个人身份,并推断个人隐私信息。为了减轻这种隐私风险,匿名技术在使用明确数据进行转换以混淆敏感信息的同时,仍保留了某些数据效用。尽管公布的数据令人印象深刻,但有时没有以令人信服的方法对这些数据进行评估。因此,我们感兴趣的是,最近在多大程度上建议了混淆面部图像的匿名技术是有效的。更具体地说,我们测试了这些技术能够自动恢复的容易程度,以估计它们能够提供的隐私。我们的方法对匿名技术是不可知的,因为我们在明确和相应的匿名数据上学习了一个机器学习模型。我们发现,14个测试过的面部匿名技术中,有10个至少可以部分反转,其中6个至少可以高度反转。