We investigate the computational complexity of separating two distinct vertices s and z by vertex deletion in a temporal graph. In a temporal graph, the vertex set is fixed but the edges have (discrete) time labels. Since the corresponding Temporal (s, z)-Separation problem is NP-hard, it is natural to investigate whether relevant special cases exist that are computationally tractable. To this end, we study restrictions of the underlying (static) graph---there we observe polynomial-time solvability in the case of bounded treewidth---as well as restrictions concerning the "temporal evolution" along the time steps. Systematically studying partially novel concepts in this direction, we identify sharp borders between tractable and intractable cases.
翻译:我们通过在时间图中删除顶点来调查将两个截然不同的脊椎S和z分离的计算复杂性。 在时间图中,顶点设置是固定的,但边缘有(分辨)时间标签。 由于相应的时空(s, z)-分离问题非常严重, 因此自然要调查是否存在可计算可移动的相关特殊案例。 为此, 我们研究底部(静态)图的限制 -- -- 在那里,我们观察到在接合树枝的情形下, 以及沿时间步骤对“ 时进化” 的限制。 我们系统地研究这方面的部分新概念, 我们发现可移动和棘手案例之间的尖锐边界 。