We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low-power (1.1 mW) but only outputs grey-scale, low resolution, and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods. Open-source code: https://github.com/vb000/NeuriCam.
翻译:我们提出了 NeuriCam,这是一个新颖的基于深度学习的系统,旨在实现从低功耗双模 IoT 摄像头系统中捕获视频。我们的想法是设计一个双模式摄像头系统,其中第一种模式是低功耗(1.1 毫瓦),但仅输出灰色、低分辨率和嘈杂的视频,第二种模式消耗更高的功率(100 毫瓦),但输出颜色和更高分辨率的图像。为了减少总能量消耗,我们将高功率模式重度循环,每秒只输出一次图像。然后将这个相机系统的数据无线发送到附近的插入式网关,在那里运行实时的神经网络解码器来重建更高分辨率的彩色视频。为了实现这一点,我们引入了一种注意力特征过滤机制,它根据特征图与每个空间位置的输入帧内容之间的相关性,分配不同的权重给不同的特征。我们使用现成的相机设计了无线硬件原型,并解决了包丢失和透视不匹配等实际问题。我们的评估表明,与现有系统相比,我们的双摄像头方法将能源消耗降低了 7 倍。此外,我们的模型比单摄像头视频超分辨率方法和双摄像头视频超分辨率方法平均提高了 3.7 dB 灰度 PSNR 增益,以及比上述颜色传播方法平均提高了 5.6 dB RGB 增益。开源代码:https://github.com/vb000/NeuriCam。