Cell-based models provide a helpful approach for simulating complex systems that exhibit adaptive, resilient qualities, such as cancer. Their focus on individual cell interactions makes them a particularly appropriate strategy to study the effects of cancer therapies, which often are designed to disrupt single-cell dynamics. In this work, we also propose them as viable methods for studying the time evolution of cancer imaging biomarkers (IBM). We propose a cellular automata model for tumor growth and three different therapies: chemotherapy, radiotherapy, and immunotherapy, following well-established modeling procedures documented in the literature. The model generates a sequence of tumor images, from which time series of two biomarkers: entropy and fractal dimension, is obtained. Our model shows that the fractal dimension increased faster at the onset of cancer cell dissemination, while entropy was more responsive to changes induced in the tumor by the different therapy modalities. These observations suggest that the predictive value of the proposed biomarkers could vary considerably with time. Thus, it is important to assess their use at different stages of cancer and for different imaging modalities. Another observation derived from the results was that both biomarkers varied slowly when the applied therapy attacked cancer cells in a scattered fashion along the automatons' area, leaving multiple independent clusters of cells at the end of the treatment. Thus, patterns of change of simulated biomarkers time series could reflect on essential qualities of the spatial action of a given cancer intervention.


翻译:以细胞为基础的模型为模拟具有适应性和耐受力性(如癌症)的复杂系统提供了一种有益的方法; 以细胞为基础的模型为模拟具有适应性和耐受性(如癌症)的复杂系统提供了一种有益的方法; 以个别细胞互动为重点,使它们成为研究癌症疗法影响的特别适当战略,而癌症疗法往往是用来破坏单细胞动态的。 在这项工作中,我们还提出这些模型作为研究癌症成像生物标志(IBM)时间演变的可行方法。 我们提议为肿瘤生长和三种不同的疗法(化疗、放射疗法和免疫疗法)提供一个细胞自动自动成像模型,遵循文献中记载的完善的模型程序。 模型产生一系列肿瘤图像,从中获取两个生物标志的时间序列:诱变和畸形维度。 我们的模型显示,在癌症细胞传播开始时,分形值增加的速度更快,同时对不同治疗模式引起的肿瘤变化反应更加迅速。 这些观察显示,拟议的生物标志的预测值随着时间的变化,可能随着时间的变化而有很大差异。 因此,必须评估它们在不同癌症阶段和不同的成像模式的使用情况。 另一个观察结果显示, 在癌症的模型中,在生物模型的分级分析中, 的分级的分级分析中, 的分级的分级反应在生物标记在生物模型的分级反应中, 的分级中,在生物标记在生物模型的分级中, 的分级的分级的分级的分级反应在生物序列中, 的分级反应在生物序列的分级反应在生物序列中, 的分级反应在生物序列中, 的分级的分级的分级反应了癌症的分级的分级的分级的分级反应在生物序列的分级反应了癌症的分级反应在生物序列的分级反应了癌症的分级的分级的分级的分级性反应了癌症的分级反应了癌症的分级反应了癌症的分级中, 的分级的分级的分级的分级的分级的分级的分级的分级中, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员