Recent works show that adversarial examples exist for random neural networks [Daniely and Schacham, 2020] and that these examples can be found using a single step of gradient ascent [Bubeck et al., 2021]. In this work, we extend this line of work to "lazy training" of neural networks -- a dominant model in deep learning theory in which neural networks are provably efficiently learnable. We show that over-parametrized neural networks that are guaranteed to generalize well and enjoy strong computational guarantees remain vulnerable to attacks generated using a single step of gradient ascent.
翻译:最近的工作表明,随机神经网络存在着对抗性的例子[Daniely和Schacham,2020年],这些例子可以用一个梯度上升的单步来找到[Bubeck等人,2021年]。在这项工作中,我们将这一工作线扩大到神经网络的“懒惰训练”——这是深层学习理论中的一种主导模式,在这种理论中,神经网络可以有效地学习。我们表明,过度平衡的神经网络,保证能够广泛推广并享有强大的计算保证,这些网络仍然容易受到使用梯度上升的单步所引发的攻击的伤害。