Given a system of linear equations $\ell_i(x)=\beta_i$ in an $n$-vector $x$ of 0-1 variables, we compute the expectation of $\exp\left\{- \sum_i \gamma_i \left(\ell_i(x) - \beta_i\right)^2\right\}$, where $x$ is a vector of independent Bernoulli random variables and $\gamma_i >0$ are constants. The algorithm runs in quasi-polynomial $n^{O(\ln n)}$ time under some sparseness condition on the matrix of the system. The result is based on the absence of the zeros of the analytic continuation of the expectation for complex probabilities, which can also be interpreted as the absence of a phase transition in the Ising model with a sufficiently strong external field. We discuss applications to (perfect) matchings in hypergraphs and randomized rounding in discrete optimization.
翻译:根据一个线性方程系统$\ell_i(x)\ ⁇ beta_i美元, 以美元为单位, 以0-1变量计算, 我们计算出的预期值为 $\ exmleft\\\\\ sum_ i\ gamma_i\ left( x) -\ beta_i- i\right)\\\\ right\ $x美元, 美元是独立的Bernoulli随机变量的矢量, $\ gamma_ i > 0美元是常数。 算法在系统矩阵的某些稀薄条件下运行。 其结果是, 对复杂概率的预期没有分析结果, 这也可以被解释为在Ising 模型中缺少一个具有足够强大的外部字段的阶段过渡。 我们讨论在高光谱和离散优化中随机化圆形的( perfect) 匹配应用程序 。