For a given set of points $U$ on a sphere $S$, the order $k$ spherical Voronoi diagram $SV_k(U)$ decomposes the surface of $S$ into regions whose points have the same $k$ nearest points of $U$. Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong (Comput. Geom., 2002) applied inversions to construct $SV_1(U)$. We generalize their construction for spherical Voronoi diagrams from order $1$ to any order $k$. We use that construction to prove formulas for the numbers of vertices, edges, and faces in $SV_k(U)$. These formulas were not known before. We obtain several more properties for $SV_k(U)$, and we also show that $SV_k(U)$ has a small orientable cycle double cover.
翻译:对于某一球体的一组美元美元,对于某一球体的球状Voronoi 图表的一组美元,按顺序排列,SV_k(U)美元将S美元表面分解到其点数与美元接近点数相同的区域。Hyeon-Suk Na、Chung-Nim Lee和Otfried Cheong(Comput.Geom.,2002年)对建造SV_1(U)美元应用了倒置。我们将其球状V_K(U)美元图的构造从1美元到任何单价。我们用这种构造来证明以美元为圆脊椎、边缘和面的公式。这些公式以前并不知道。我们用SV_k(U)美元获得了几个更多的属性,我们也显示,$SV_k(U)美元有一个小的可持久的双周期覆盖。