Currently, multi-output Gaussian process regression models either do not model nonstationarity or are associated with severe computational burdens and storage demands. Nonstationary multi-variate Gaussian process models (NMGP) use a nonstationary covariance function with an input-dependent linear model of coregionalisation to jointly model input-dependent correlation, scale, and smoothness of outputs. Variational sparse approximation relies on inducing points to enable scalable computations. Here, we take the best of both worlds: considering an inducing variable framework on the underlying latent functions in NMGP, we propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP). For CNMGP, we derive computationally tractable variational bounds amenable to doubly stochastic variational inference. Together, this allows us to model data in which outputs do not share a common input set, with a computational complexity that is independent of the size of the inputs and outputs. We illustrate the performance of our method on synthetic data and three real datasets and show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.
翻译:目前,多输出高斯进程回归模型要么不模拟非常态性,要么与严重计算负担和存储需求相关。非常态多变高斯进程模型(NMGP)使用非常态共变功能,带有投入依赖的线性共同区域化模型,以共同模拟依赖投入的关联性、规模和产出的平滑性。变量稀疏近点依赖于导出点,以便进行可缩放的计算。这里,我们采用两个世界的最佳方法:考虑一个引导关于NMGP潜在功能的可变框架,我们提议一个称为协作非静止高斯进程模型(CNMGP)的新模式。对于CNMGP,我们用一个可计算可移动的可移动变线性线性线性模型来计算出共同区域化模型,以便共同模拟产出不共享共同输入数据集,其计算复杂性独立于投入和产出的大小。我们展示了我们在合成数据和三个真实数据集上的方法的性能,并展示了我们模型一般的可移动性可移动性变性变性变性变化性模型,从而更好地预测了不同状态。