Real world datasets often contain noisy labels, and learning from such datasets using standard classification approaches may not produce the desired performance. In this paper, we propose a Gaussian Mixture Discriminant Analysis (GMDA) with noisy label for each class. We introduce flipping probability and class probability and use EM algorithms to solve the discriminant problem with label noise. We also provide the detail proofs of convergence. Experimental results on synthetic and real-world datasets show that the proposed approach notably outperforms other four state-of-art methods.
翻译:真实世界数据集通常含有噪音标签, 使用标准分类方法从这些数据集中学习可能不会产生预期的性能。 在本文中, 我们建议使用高斯混血分辨分析( GMDA ), 每类都有噪音标签。 我们引入翻转概率和类概率, 并使用 EM 算法解决标签噪音的矛盾问题 。 我们还提供了详细的趋同证据。 合成和真实世界数据集的实验结果显示, 拟议的方法明显优于其他四种最先进的方法 。