We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. In this setting, if two precedence-constrained jobs $u$ and $v$, with ($u \prec v$), are scheduled on different machines, then $v$ must start at least $\rho$ time units after $u$ completes. The scheduling objective is to minimize makespan, i.e. the total time between when the first job starts and the last job completes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an $O\left(\frac{\ln \rho}{\ln \ln \rho} \right)$-approximation algorithm that runs in $\tilde{O}(|V| + |E|)$ time.
翻译:我们考虑的是,在统一通信延迟的情况下,如何高效地安排工作,对一组相同机器实行优先限制。在这个背景下,如果两个受优先限制的工作(美元和美元,加上美元)安排在不同机器上,那么美元必须在美元完成后至少启动美元/美元的时间单位。 排期的目标是将 makespan最小化, 即第一次工作开始到最后一份工作完成之间的总时间。 本文的重点是提供近线运行时间的有效近似算法。 我们为此利用Lepere和Rapine的算法[STACS 2002], 给一个以 $\left( left) (\ frac=ln\rhoun\rho}\right) 运行于 $\ tite{O}( ⁇ + ⁇ E ⁇ } 时间运行的美元- accolomation 算法。