The Project Optimus initiative by the FDA's Oncology Center of Excellence is widely viewed as a groundbreaking effort to change the $\textit{status quo}$ of conventional dose-finding strategies in oncology. Unlike in other therapeutic areas where multiple doses are evaluated thoroughly in dose ranging studies, early-phase oncology dose-finding studies are characterized by the practice of identifying a single dose, such as the maximum tolerated dose (MTD) or the recommended phase 2 dose (RP2D). Following the spirit of Project Optimus, we propose an Multi-Arm Two-Stage (MATS) design for proof-of-concept (PoC) and dose optimization that allows the evaluation of two selected doses from a dose-escalation trial. The design assess the higher dose first across multiple indications in the first stage, and adaptively enters the second stage for an indication if the higher dose exhibits promising anti-tumor activities. In the second stage, a randomized comparison between the higher and lower doses is conducted to achieve proof-of-concept (PoC) and dose optimization. A Bayesian hierarchical model governs the statistical inference and decision making by borrowing information across doses, indications, and stages. Our simulation studies show that the proposed MATS design yield desirable performance. An R Shiny application has been developed and made available at https://matsdesign.shinyapps.io/mats/.


翻译:美国FDA肿瘤学卓越中心的Optimus项目被广泛认为是改变肿瘤学中传统剂量确定策略的开创性努力。与在其他治疗领域评估多个剂量以进行剂量范围研究不同,早期肿瘤学剂量确定研究的实践是确定单个剂量,如最大耐受剂量(MTD)或推荐的2期剂量(RP2D)。沿着Optimus项目的精神,我们提出了一种用于概念验证和剂量优化的多臂二阶段(MATS)设计,允许从剂量递增试验中评估两个已选剂量。该设计在第一阶段先跨多个适应症评估更高的剂量,并在更高的剂量展现出有前途的抗肿瘤活性时适应性地进入第二阶段的某个适应症。在第二阶段,进行更高和更低剂量之间的随机比较,以实现概念验证(PoC)和剂量优化。贝叶斯分层模型管理统计推断和决策,通过跨剂量、适应症和阶段借鉴信息。我们的模拟研究表明,所提出的MATS设计具有理想的性能。R Shiny应用程序已开发并可在https://matsdesign.shinyapps.io/mats/上使用。

0
下载
关闭预览

相关内容

《Engineering》:从数据到AI药物研发
专知会员服务
42+阅读 · 2023年5月17日
专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
1+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
Top
微信扫码咨询专知VIP会员