With the substantial performance of neural networks in sensitive fields increases the need for interpretable deep learning models. Major challenge is to uncover the multiscale and distributed representation hidden inside the basket mappings of the deep neural networks. Researchers have been trying to comprehend it through visual analysis of features, mathematical structures, or other data-driven approaches. Here, we work on implementation invariances of CNN-based representations and present an analytical binary prototype that provides useful insights for large scale real-life applications. We begin by unfolding conventional CNN and then repack it with a more transparent representation. Inspired by the attainment of neural networks, we choose to present our findings as a three-layer model. First is a representation layer that encompasses both the class information (group invariant) and symmetric transformations (group equivariant) of input images. Through these transformations, we decrease intra-class distance and increase the inter-class distance. It is then passed through a dimension reduction layer followed by a classifier. The proposed representation is compared with the equivariance of AlexNet (CNN) internal representation for better dissemination of simulation results. We foresee following immediate advantages of this toy version: i) contributes pre-processing of data to increase the feature or class separability in large scale problems, ii) helps designing neural architecture to improve the classification performance in multi-class problems, and iii) helps building interpretable CNN through scalable functional blocks.
翻译:随着神经网络在敏感领域的大量表现,神经网络在敏感领域的大量表现增加了对可解释的深层学习模式的需求。主要的挑战在于发现深神经网络篮子绘图中隐藏的多尺度和分布式代表层。研究人员一直试图通过对特征、数学结构或其他数据驱动方法的视觉分析来理解它。在这里,我们致力于实施基于CNN的表达式的变异性,并展示一个分析性的二进制原型,为大规模现实应用提供有用的洞察力。我们从常规CNN开始,然后以更透明的代表制重新包装它。在神经网络的建立激励下,我们选择将我们的调查结果作为三层模型来展示。首先,我们是一个代表层,它既包括阶级信息(变异性组),也包括投入图像的对称转换(变异组)。我们通过这些转变,我们减少了阶级内部距离,增加了阶级之间的距离,提高了阶级之间的距离。随后又通过一个分层递增分层。拟议代表制与亚历克斯网的内部代表制比较,我们选择将我们的调查结果作为三层模型的模型模型。第一代表层代表层,我们预见的是包含类信息信息级信息级信息结构结构的立即的变化,从而提升到升级为升级的变换版。我们为升级的变换版。 我们设想了该结构的功能的变化, 改进了该结构的变制的变制的变制的变制的变制, 改进了本结构的变制为升级为升级为升级性结构的变制的变制的变制的变制的变制的变制为升级为升级为升级性结构, 改进了该变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制为升级制为升级制,使为升级制,使为升级化为升级制为升级制为升级制的变制为升级制为制为升级制为升级制的变制的变制为升级制为制为制为制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的