With the substantial performance of neural networks in sensitive fields increases the need for interpretable deep learning models. Major challenge is to uncover the multiscale and distributed representation hidden inside the basket mappings of the deep neural networks. Researchers have been trying to comprehend it through visual analysis of features, mathematical structures, or other data-driven approaches. Here, we work on implementation invariances of CNN-based representations and present an analytical binary prototype that provides useful insights for large scale real-life applications. We begin by unfolding conventional CNN and then repack it with a more transparent representation. Inspired by the attainment of neural networks, we choose to present our findings as a three-layer model. First is a representation layer that encompasses both the class information (group invariant) and symmetric transformations (group equivariant) of input images. Through these transformations, we decrease intra-class distance and increase the inter-class distance. It is then passed through a dimension reduction layer followed by a classifier. The proposed representation is compared with the equivariance of AlexNet (CNN) internal representation for better dissemination of simulation results. We foresee following immediate advantages of this toy version: i) contributes pre-processing of data to increase the feature or class separability in large scale problems, ii) helps designing neural architecture to improve the classification performance in multi-class problems, and iii) helps building interpretable CNN through scalable functional blocks.


翻译:随着神经网络在敏感领域的大量表现,神经网络在敏感领域的大量表现增加了对可解释的深层学习模式的需求。主要的挑战在于发现深神经网络篮子绘图中隐藏的多尺度和分布式代表层。研究人员一直试图通过对特征、数学结构或其他数据驱动方法的视觉分析来理解它。在这里,我们致力于实施基于CNN的表达式的变异性,并展示一个分析性的二进制原型,为大规模现实应用提供有用的洞察力。我们从常规CNN开始,然后以更透明的代表制重新包装它。在神经网络的建立激励下,我们选择将我们的调查结果作为三层模型来展示。首先,我们是一个代表层,它既包括阶级信息(变异性组),也包括投入图像的对称转换(变异组)。我们通过这些转变,我们减少了阶级内部距离,增加了阶级之间的距离,提高了阶级之间的距离。随后又通过一个分层递增分层。拟议代表制与亚历克斯网的内部代表制比较,我们选择将我们的调查结果作为三层模型的模型模型。第一代表层代表层,我们预见的是包含类信息信息级信息级信息结构结构的立即的变化,从而提升到升级为升级的变换版。我们为升级的变换版。 我们设想了该结构的功能的变化, 改进了该结构的变制的变制的变制的变制的变制, 改进了本结构的变制为升级为升级为升级性结构的变制的变制的变制的变制的变制的变制为升级为升级为升级性结构, 改进了该变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制为升级制为升级制,使为升级制,使为升级化为升级制为升级制为升级制的变制为升级制为制为升级制为升级制的变制的变制为升级制为制为制为制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的变制的

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
13+阅读 · 2021年3月3日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员