项目名称: 无标石地表沉陷盆地多回波扫描获取方法研究
项目编号: No.51504239
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 矿业工程
项目作者: 李亮
作者单位: 中国矿业大学
项目金额: 21万元
中文摘要: 随着煤炭资源开发重心向西部生态脆弱区规模化开采和东部人口聚居区深部开采的转移,需要足够的实测资料为新形势下矿区生产规划和环境保护提供数据保障。针对现有沉陷数据获取方法中的测点保存困难、数据量少、覆盖面窄等缺陷,本项目研究基于三维激光扫描系统不埋标石、自由设站获取沉陷区整体移动变形信息的关键问题。项目在开展不同类型自由设站方法进行点云数据获取优缺点研究的基础上,分析各种类型地物(地貌)在点云数据回波特征、颜色特征、亮度特征中的呈现形式,进行真实地形、临时地貌、永久地物的准确分类;进而研究基于真实地形点云数据的沉陷求取理论和基于典型地物轮廓特征的水平移动提取算法,实现沉陷盆地移动变形信息的准确全面获取。研究成果为突破目前开采沉陷监测技术瓶颈,实现沉陷盆地实时、快速、高效、全面观测,促进开采沉陷研究快速发展,推动煤炭资源开发利用和生态环境保护的和谐统一提供技术支撑。
中文关键词: 三维激光扫描;开采沉陷;无标石;变形监测;点云数据处理
英文摘要: Along with the transferring of coal resources development center to large-scale mining in western eco-fragile regions and deep mining in eastern densely populated areas, sufficient data should be measured to satisfy the production planning and environmental protection need of the new condition. This program explores key techniques of obtaining information about displacement and deformation in subsidence areas through 3D laser without burying markstone, by means of free-setting stations, aiming at tackling existing problems of scarce data, limited coverage and measure points hard saving under current technology. In this study, we research the merits and faults of obtaining in cloud points with several forms of free-setting station, analyze different objects’ features in terms of echo, color and luminance in point cloud data. Then we find out the subsidence acquisition theory and Horizontal displacement extraction algorithm on the basis of authentic terrain point cloud data and typical terrain contour features, respectively. The research results will provide technological supports for breaking through bottleneck of current mining subsidence monitoring technique, implementing real-time, fast, efficient and overall observations, accelerating the development of mining subsidence research, as well promoting harmony and unity between the development and utility of coal resources and the protection of environment.
英文关键词: 3D Laser Scanning system;mining subsidence;no markstone;deformation monitoring;point cloud data processing