Named entity recognition and relation classification are key stages for extracting information from unstructured text. Several natural language processing applications utilize the two tasks, such as information retrieval, knowledge graph construction and completion, question answering and other domain-specific applications, such as biomedical data mining. We present a survey of recent approaches in the two tasks with focus on few-shot learning approaches. Our work compares the main approaches followed in the two paradigms. Additionally, we report the latest metric scores in the two tasks with a structured analysis that considers the results in the few-shot learning scope.
翻译:暂无翻译