We analyze neural networks composed of bijective flows and injective expansive elements. We find that such networks universally approximate a large class of manifolds simultaneously with densities supported on them. Among others, our results apply to the well-known coupling and autoregressive flows. We build on the work of Teshima et al. 2020 on bijective flows and study injective architectures proposed in Brehmer et al. 2020 and Kothari et al. 2021. Our results leverage a new theoretical device called the embedding gap, which measures how far one continuous manifold is from embedding another. We relate the embedding gap to a relaxation of universally we call the manifold embedding property, capturing the geometric part of universality. Our proof also establishes that optimality of a network can be established in reverse, resolving a conjecture made in Brehmer et al. 2020 and opening the door for simple layer-wise training schemes. Finally, we show that the studied networks admit an exact layer-wise projection result, Bayesian uncertainty quantification, and black-box recovery of network weights.


翻译:我们分析由双向流动和导射扩展元素组成的神经网络。 我们发现,这种网络普遍与大量多层的多层相近,同时支持密度。 我们的结果适用于众所周知的联结和自动递减流。 我们以Teshima等人2020年在Brehmer等人(2020年)和Kothari等人(2021年)提出的双向流和预测性结构方面开展的工作为基础,在Teshima等人2020年关于双向流动和研究双向流和预测性结构的工作的基础上再接再厉。 我们的结果利用了一个新的理论装置,称为嵌入差距,它测量一个连续的元体离嵌入另一个元体有多远。我们把嵌入的鸿沟与我们普遍称为多层嵌入属性的放松联系起来,捕捉到普遍性的几何部分。我们的证据还证明,一个网络的最佳性可以建立反向,解决在Brehmer等人(2020年)和Kothari等人(Kothari)等人(Kothari)等人(2021年)提出的预测。 我们的结果表明,所研究的网络接受了一种精确的层次预测结果,即Bayesian不确定性的量化和黑箱网络重量的回收。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【斯坦福经典书】机器学习导论,188页pdf
专知会员服务
77+阅读 · 2021年3月31日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月2日
Using Scene Graph Context to Improve Image Generation
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员